
1

2

3

MIPS Instruction Set Architecture

Adapted by P. Baglietto from Computer Organization and Design, Patterson & Hennessy, and Irwin

4

Review : Evaluating ISAs
 Design-time metrics:

 Can it be implemented? With what performance, at what costs (design,
fabrication, test, packaging), with what power, with what reliability?

 Can it be programmed? Ease of compilation?

 Static Metrics:
 How many bytes does the program occupy in memory?

 Dynamic Metrics:
 How many instructions are executed? How many bytes does the processor

fetch to execute the program?
 How many clocks are required per instruction?
 How "lean" a clock is practical?

Best Metric: Time to execute the program!

CPI

Inst. Count Cycle Timedepends on the instructions set, the processor
organization, and compilation techniques.

5

Two Key Principles of Machine Design
1. Instructions are represented as numbers and, as such,

are indistinguishable from data

2. Programs are stored in alterable memory (that can be
read or written to) just like data

 Stored-program concept
 Programs can be shipped as files of

binary numbers – binary compatibility
 Computers can inherit ready-made

software provided they are compatible
with an existing ISA – leads industry to
align around a small number of ISAs

Accounting prg
(machine code)

C compiler
(machine code)

Payroll data

Source code in C
for Acct prg

Memory

6

MIPS (RISC) Design Principles
 Simplicity favors regularity

 fixed size instructions
 small number of instruction formats
 opcode always the first 6 bits

 Smaller is faster
 limited instruction set
 limited number of registers in register file
 limited number of addressing modes

 Make the common case fast
 arithmetic operands from the register file (load-store machine)
 allow instructions to contain immediate operands

 Good design demands good compromises
 three instruction formats

7

MIPS-32 ISA

 Instruction Categories
 Computational
 Load/Store
 Jump and Branch
 Floating Point

- coprocessor
 Memory Management
 Special

R0 - R31

PC
HI
LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

9

MIPS Arithmetic Instructions
 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs one operation

 Each specifies exactly three operands that are all contained
in the datapath’s register file ($t0,$s1,$s2)

destination ← source1 op source2

 Instruction Format (R format)

0 17 18 8 0 0x22

10

 MIPS fields are given names to make them easier to refer to

MIPS Instruction Fields

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination
shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

11

MIPS Register File
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

 Holds thirty-two 32-bit registers
 Two read ports and
 One write port

 Registers are
 Faster than main memory

- But register files with more locations are
slower (e.g., a 64 word file could be as
much as 50% slower than a 32 word file)

- Read/write port increase impacts speed quadratically
 Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs. stack
 Can hold variables so that

- code density improves (since register are named with fewer bits than a
memory location)

write control

12

Aside: MIPS Register Convention

Name Reg. N. Usage Preserve on
call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$k0 - $k1 26-27 reserved for kernel n.a.

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

13

MIPS Memory Access Instructions
 MIPS has two basic data transfer instructions for accessing

memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

 The data is loaded into (lw) or stored from (sw) a register in the
register file – a 5 bit address

 The memory address – a 32 bit address – is formed by adding
the contents of the base address register to the offset value
 A 16-bit field meaning access is limited to memory locations within a

region of ±213 or 8,192 words (±215 or 32,768 bytes) of the address in
the base register

14

 Load/Store Instruction Format (I format):

lw $t0, 24($s3)

Machine Language - Load Instruction

35 19 8 2410

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s3 0x12004094

2410 + $s3 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

15

Byte Addresses
 Since 8-bit bytes are so useful, most architectures address

individual bytes in memory
 Alignment restriction - the memory address of a word must be on

natural word boundaries (a multiple of 4 in MIPS-32)

 Big Endian: leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

 Little Endian: rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3
big endian byte 0

16

Aside: Loading and Storing Bytes
 MIPS provides special instructions to move bytes

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

0x28 19 8 16 bit offset

 What 8 bits get loaded and stored?
 load byte places the byte from memory in the rightmost 8 bits of the

destination register
- what happens to the other bits in the register?

 store byte takes the byte from the rightmost 8 bits of a register and
writes it to a byte in memory

- what happens to the other bits in the memory word?

17

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

 Machine format (I format):

MIPS Immediate Instructions

0x0A 18 8 0x0F

 Small constants are used often in typical code

 Possible approaches?
 put “typical constants” in memory and load them
 create hard-wired registers (like $zero) for constants like 1
 have special instructions that contain constants !

 The constant is kept inside the instruction itself!
 Immediate format limits values to the range +215–1 to -215

18

 We'd also like to be able to load a 32 bit constant into a
register, for this we must use two instructions

 a new "load upper immediate" instruction

lui $t0, 1010101010101010

 Then must get the lower order bits right, use
ori $t0, $t0, 1010101010101010

Aside: How About Larger Constants?

16 0 8 10101010101010102

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010 1010101010101010

19

MIPS Shift Operations
 Need operations to pack and unpack 8-bit characters into 32-

bit words

 Shifts move all the bits in a word left or right

sll $t2, $s0, 8 #$t2 = $s0 << 8 bits

srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits

 Instruction Format (R format)

 Such shifts are called logical because they fill with zeros
 Notice that a 5-bit shamt field is enough to shift a 32-bit value 25 – 1

or 31 bit positions

0 16 10 8 0x00

20

MIPS Logical Operations
 There are a number of bit-wise logical operations in the MIPS

ISA
and $t0, $t1, $t2 #$t0 = $t1 & $t2

or $t0, $t1, $t2 #$t0 = $t1 | $t2

nor $t0, $t1, $t2 #$t0 = not($t1 | $t2)

 Instruction Format (R format)

andi $t0, $t1, 0xFF00 #$t0 = $t1 & ff00

ori $t0, $t1, 0xFF00 #$t0 = $t1 | ff00

 Instruction Format (I format)

0 9 10 8 0 0x24

0x0D 9 8 0xFF00

21

 MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1
 Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

 Instruction Format (I format):

0x05 16 17 16 bit offset

 How is the branch destination address specified?

22

Specifying Branch Destinations
 Use a register (like in lw and sw) added to the 16-bit offset

 which register? Instruction Address Register (the PC)
- its use is automatically implied by instruction
- PC gets updated (PC+4) during the fetch cycle so that it holds the address of

the next instruction
 limits the branch distance to -215 to +215-1 (word) instructions from the

(instruction after the) branch instruction, but most branches are local
anyway

PC
Add

32

32 32
32

32

offset
16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

23

 We have beq, bne, but what about other kinds of branches
(e.g., branch-if-less-than)? For this, we need yet another
instruction, slt

 Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0

 Instruction format (R format):

 Alternate versions of slt
slti $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

sltu $t0, $s0, $s1 # if $s0 < $s1 then $t0=1 ...

sltiu $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

2

In Support of Branch Instructions

0 16 17 8 0x24

24

Aside: More Branch Instructions
 Can use slt, beq, bne, and the fixed value of 0 in register
$zero to create other conditions
 less than blt $s1, $s2, Label

 less than or equal to ble $s1, $s2, Label

 greater than bgt $s1, $s2, Label

 great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 #$at set to 1 if
bne $at, $zero, Label #$s1 < $s2

 Such branches are included in the instruction set as pseudo
instructions - recognized (and expanded) by the assembler
 Its why the assembler needs a reserved register ($at)

25

Bounds Check Shortcut
 Treating signed numbers as if they were unsigned gives a low

cost way of checking if 0 ≤ x < y (index out of bounds for
arrays)

sltu $t0, $s1, $t2 # $t0 = 0 if
$s1 > $t2 (max)
or $s1 < 0 (min)

beq $t0, $zero, IOOB # go to IOOB if
$t0 = 0

 The key is that negative integers in two’s complement look
like large numbers in unsigned notation. Thus, an unsigned
comparison of x < y also checks if x is negative as well as if x
is less than y.

26

 MIPS also has an unconditional branch instruction or jump
instruction:

j label #go to label

Other Control Flow Instructions

 Instruction Format (J Format):
0x02 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

27

Aside: Branching Far Away
 What if the branch destination is further away than can be

captured in 16 bits?

 The assembler comes to the rescue – it inserts an
unconditional jump to the branch target and inverts the
condition

beq $s0, $s1, L1

becomes

bne $s0, $s1, L2
j L1

L2:

28

 MIPS procedure call instruction:

jal ProcedureAddress #jump and link

 Saves PC+4 in register $ra to have a link to the next instruction
for the procedure return

 Machine format (J format):

 Then can do procedure return with a

jr $ra #return

 Instruction format (R format):

Instructions for Accessing Procedures

0x03 26 bit address

0 31 0x08

29

Six Steps in Execution of a Procedure
1. Main routine (caller) places parameters in a place where the

procedure (callee) can access them
 $a0 - $a3: four argument registers

2. Caller transfers control to the callee

3. Callee acquires the storage resources needed

4. Callee performs the desired task

5. Callee places the result value in a place where the caller can
access it
 $v0 - $v1: two value registers for result values

6. Callee returns control to the caller
 $ra: one return address register to return to the point of origin

30

Aside: Allocating Space on the Heap
 Static data segment for

constants and other static
variables (e.g., arrays)

 Dynamic data segment (aka
heap) for structures that
grow and shrink (e.g., linked
lists)
 Allocate space on the heap

with malloc() and free it
with free() in C

0x 0000 0000

Text
(Your code)

Reserved

Static data

0x 0040 0000

0x 1000 0000
0x 1000 8000

0x 7f f f f f f c
Stack

Dynamic data
(heap)

$sp

$gp

PC

Memory
Reserved

0x 7f f f f f f f

31

Aside: Spilling Registers
 What if the callee needs to use more registers than

allocated to argument and return values?
 callee uses a stack – a last-in-first-out queue

low addr

high addr

$sp

 One of the general registers, $sp
($29), is used to address the stack
(which “grows” from high address to
low address)

 add data onto the stack – push
$sp = $sp – 4
data on stack at new $sp

 remove data from the stack – pop

data from stack at $sp
$sp = $sp + 4

top of stack

32

Aside: Allocating Space on the Stack
 The segment of the stack

containing a procedure’s saved
registers and local variables is its
procedure frame (aka activation
record)
 The frame pointer ($fp) points to

the first word of the frame of a
procedure – providing a stable
“base” register for the procedure
-$fp is initialized using $sp on a call

and $sp is restored using $fp on a
return

low addr

high addr

$sp

Saved argument
regs (if any)

Saved return addr

Saved local regs
(if any)

Local arrays &
structures (if
any)

$fp

33

Atomic Exchange Support
 Need hardware support for synchronization mechanisms to

avoid data races where the results of the program can change
depending on how events happen to occur
 Two memory accesses from different threads to the same location,

and at least one is a write

 Atomic exchange (atomic swap) – interchanges a value in a
register for a value in memory atomically, i.e., as one
operation (instruction)
 Implementing an atomic exchange would require both a memory read

and a memory write in a single, uninterruptable instruction. An
alternative is to have a pair of specially configured instructions

ll $t1, 0($s1) #load linked

sc $t0, 0($s1) #store conditional

34

Atomic Exchange with ll and sc
 If the contents of the memory location specified by the ll

are changed before the sc to the same address occurs, the
sc fails (returns a zero)

try: add $t0, $zero, $s4 #$t0=$s4 (exchange value)
ll $t1, 0($s1) #load memory value to $t1
sc $t0, 0($s1) #try to store exchange

#value to memory, if fail
#$t0 will be 0

beq $t0, $zero, try #try again on failure
add $s4, $zero, $t1 #load value in $s4

 If the value in memory between the ll and the sc
instructions changes, then sc returns a 0 in $t0 causing the
code sequence to try again.

35

MIPS Instruction Classes Distribution
 Frequency of MIPS instruction classes for SPEC2006

Instruction Class Frequency
Integer Ft. Pt.

Arithmetic 16% 48%
Data transfer 35% 36%
Logical 12% 4%
Cond. Branch 34% 8%
Jump 2% 0%

36

The C Code Translation Hierarchy
C program

compiler

assembly code

assembler

object code library routines

executable

linker

loader

memory

machine code

37

Compiler Benefits
 Comparing performance for bubble (exchange) sort

 To sort 100,000 words with the array initialized to random values on a
Pentium 4 with a 3.06 clock rate, a 533 MHz system bus, with 2 GB of
DDR SDRAM, using Linux version 2.4.20

gcc opt Relative
performance

Clock
cycles (M)

Instr count
(M)

CPI

None 1.00 158,615 114,938 1.38
O1 (medium) 2.37 66,990 37,470 1.79
O2 (full) 2.38 66,521 39,993 1.66
O3 (hard) 2.41 65,747 44,993 1.46

 The unoptimized code has the best CPI, the O1 version has
the lowest instruction count, but the O3 version is the fastest.
Why?

38

The Java Code Translation Hierarchy

Java program

compiler

Class files (Java bytecodes)

Just In Time (JIT)
compiler

Compiled Java methods (machine code)

Java library routines (machine code)

Java Virtual
Machine

39

Sorting in C versus Java
 Comparing performance for two sort algorithms in C and Java

 The JVM/JIT is Sun/Hotspot version 1.3.1/1.3.1

Method Opt Bubble Quick Speedup
quick vs
bubble

Relative performance

C Compiler None 1.00 1.00 2468
C Compiler O1 2.37 1.50 1562
C Compiler O2 2.38 1.50 1555
C Compiler O3 2.41 1.91 1955
Java Interpreted 0.12 0.05 1050
Java JIT compiler 2.13 0.29 338

	Diapositiva numero 1
	Diapositiva numero 2
	MIPS Instruction Set Architecture
	Review : Evaluating ISAs
	Two Key Principles of Machine Design
	MIPS (RISC) Design Principles
	MIPS-32 ISA
	MIPS Arithmetic Instructions
	MIPS Instruction Fields
	MIPS Register File
	Aside: MIPS Register Convention
	MIPS Memory Access Instructions
	Machine Language - Load Instruction
	Byte Addresses
	Aside: Loading and Storing Bytes
	MIPS Immediate Instructions
	Aside: How About Larger Constants?
	MIPS Shift Operations
	MIPS Logical Operations
	MIPS Control Flow Instructions
	Specifying Branch Destinations
	In Support of Branch Instructions
	Aside: More Branch Instructions
	Bounds Check Shortcut
	Other Control Flow Instructions
	Aside: Branching Far Away
	Instructions for Accessing Procedures
	Six Steps in Execution of a Procedure
	Aside: Allocating Space on the Heap
	Aside: Spilling Registers
	Aside: Allocating Space on the Stack
	Atomic Exchange Support
	Atomic Exchange with ll and sc
	MIPS Instruction Classes Distribution
	The C Code Translation Hierarchy
	Compiler Benefits
	The Java Code Translation Hierarchy
	Sorting in C versus Java

